Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.04.05.588359

ABSTRACT

Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.


Subject(s)
Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.05.498883

ABSTRACT

The rapid emergence of new SARS-CoV-2 variants challenges vaccination strategies. Here, we measured antigenic diversity among variants and interpreted neutralizing antibody responses following single and multiple exposures in longitudinal infection and vaccine cohorts. Antigenic cartography using primary infection antisera showed that BA.2, BA.4/BA.5, and BA.2.12.1 are distinct from BA.1 and closer to the Beta cluster. Three doses of an mRNA COVID-19 vaccine increased breadth to BA.1 more than to BA.4/BA.5 or BA.2.12.1. Omicron BA.1 post-vaccination infection elicited antibody landscapes characterized by broader immunity across antigenic space than three doses alone, although with less breadth than expected to BA.2.12.1 and BA.4/BA.5. Those with Omicron BA.1 infection after two or three vaccinations had similar neutralizing titer magnitude and antigenic breadth. Accounting for antigenic differences among variants of concern when interpreting neutralizing antibody titers aids understanding of complex patterns in humoral immunity and informs selection of future COVID-19 vaccine strains.


Subject(s)
Infections , Ossification of Posterior Longitudinal Ligament , COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.22.473880

ABSTRACT

The rapid spread of the highly contagious Omicron variant of SARS-CoV-2 along with its high number of mutations in the spike gene has raised alarm about the effectiveness of current medical countermeasures. To address this concern, we measured neutralizing antibodies against Omicron in three important settings: (1) post-vaccination sera after two and three immunizations with the Pfizer/BNT162b2 vaccine, (2) convalescent sera from unvaccinated individuals infected by different variants, and (3) clinical-stage therapeutic antibodies. Using a pseudovirus neutralization assay, we found that titers against Omicron were low or undetectable after two immunizations and in most convalescent sera. A booster vaccination significantly increased titers against Omicron to levels comparable to those seen against the ancestral (D614G) variant after two immunizations. Neither age nor sex were associated with differences in post-vaccination antibody responses. Only three of 24 therapeutic antibodies tested retained their full potency against Omicron and high-level resistance was seen against fifteen. These findings underscore the potential benefit of booster mRNA vaccines for protection against Omicron and the need for additional therapeutic antibodies that are more robust to highly mutated variants. One Sentence Summary Third dose of Pfizer/BioNTech COVID-19 vaccine significantly boosts neutralizing antibodies to the Omicron variant compared to a second dose, while neutralization of Omicron by convalescent sera, two-dose vaccine-elicited sera, or therapeutic antibodies is variable and often low.


Subject(s)
COVID-19
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-630472.v1

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), also known as 2019 novel coronavirus (2019-nCoV), is a highly infectious RNA virus. A percentage of patients develop coronavirus disease 2019 (COVID-19) after infection, whose symptoms include fever, cough, shortness of breath and fatigue. Acute and life-threatening respiratory symptoms are experienced by 10-20% of symptomatic patients, particularly those with underlying medical conditions. One of the main challenges in the containment of COVID-19 is the identification and isolation of asymptomatic/pre-symptomatic individuals. A number of molecular assays are currently used to detect SARS-CoV-2.  Many of them can accurately test hundreds or even thousands of patients every day. However, there are presently no testing platforms that enable more than 10,000 tests per day. Here, we describe the foundation for the REcombinase Mediated BaRcoding and AmplificatioN Diagnostic Tool (REMBRANDT), a high-throughput Next Generation Sequencing-based approach for the simultaneous screening of over 100,000 samples per day. The REMBRANDT protocol includes direct two-barcoded amplification of SARS-CoV-2 and control amplicons using an isothermal reaction, and the downstream library preparation for Illumina sequencing and bioinformatics analysis. This protocol represents a potentially powerful approach for community screening of COVID 19 that may be modified for application to any infectious or non-infectious genome.  


Subject(s)
Dyspnea , Fever , Severe Acute Respiratory Syndrome , Cough , COVID-19 , Fatigue
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.27.21256207

ABSTRACT

Importance: The persistence of SARS-CoV-2 antibodies may be a predictive correlate of protection for both natural infections and vaccinations. Identifying predictors of robust antibody responses is important to evaluate the risk of re-infection / vaccine failure and may be translatable to vaccine effectiveness. Objective: To 1) determine the durability of anti-SARS-CoV-2 IgG and neutralizing antibodies in subjects who experienced mild and moderate to severe COVID-19, and 2) to evaluate the correlation of age and IgG responses to both endemic human seasonal coronaviruses (HCoVs) and SARS-CoV-2 according to infection outcome. Design: Longitudinal serum samples were collected from PCR-confirmed SARS-CoV-2 positive participants (U.S. active duty service members, dependents and military retirees, including a range of ages and demographics) who sought medical treatment at seven U.S. military hospitals from March 2020 to March 2021 and enrolled in a prospective observational cohort study. Results: We observed SARS-CoV-2 seropositivity in 100% of inpatients followed for six months (58/58) to one year (8/8), while we observed seroreversion in 5% (9/192) of outpatients six to ten months after symptom onset, and 18% (2/11) of outpatients followed for one year. Both outpatient and inpatient anti-SARS-CoV-2 binding-IgG responses had a half-life (T1/2) of >1000 days post-symptom onset. The magnitude of neutralizing antibodies (geometric mean titer, inpatients: 378 [246-580, 95% CI] versus outpatients: 83 [59-116, 95% CI]) and durability (inpatients: 65 [43-98, 95% CI] versus outpatients: 33 [26-40, 95% CI]) were associated with COVID-19 severity. Older age was a positive correlate with both higher IgG binding and neutralizing antibody levels when controlling for COVID-19 hospitalization status. We found no significant relationships between HCoV antibody responses and COVID-19 clinical outcomes, or the development of SARS-CoV-2 neutralizing antibodies. Conclusions and Relevance: This study demonstrates that humoral responses to SARS-CoV-2 infection are robust on longer time-scales, including those arising from milder infections.


Subject(s)
COVID-19 , Heart Failure
SELECTION OF CITATIONS
SEARCH DETAIL